

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps
3rd IBM Limited Edition

by Sanjeev Sharma
and Bernie Coyne

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps For Dummies®, 3rd IBM Limited Edition
Published by
John Wiley & Sons, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2017 by John Wiley & Sons, Inc.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
the prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, The Dummies Way, Dummies.com,
Making Everything Easier, and related trade dress are trademarks or registered trademarks of
John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not
be used without written permission. IBM and the IBM logo are registered trademarks of
International Business Machines Corporation. All other trademarks are the property of their
respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE
AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS
WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN
RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL
ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING
HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK
AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN
THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION
OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, or how to create a custom For
Dummies book for your business or organization, please contact our Business Development
Department in the U.S. at 877-409-4177, contact info@dummies.biz, or visit www.wiley.com/
go/custompub. For information about licensing the For Dummies brand for products or services,
contact BrandedRights&Licenses@Wiley.com.

ISBN: 978-1-119-41589-3 (pbk); ISBN: 978-1-119-41588-6 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
mailto:info@dummies.biz
http://www.wiley.com/go/custompub
http://www.wiley.com/go/custompub
mailto:Licenses@Wiley.com
mailto:BrandedRights&Licenses@Wiley.com

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Table of Contents
INTRODUCTION ... 1

About This Book ... 1
Icons Used in This Book ... 2
Beyond the Book .. 2

CHAPTER 1: What Is DevOps? ... 3
Understanding the Business Need for DevOps 3
Recognizing the Business Value of DevOps 4

Enhanced customer experience ... 5
Increased capacity to innovate.. 5
Faster time to value .. 6

Seeing How DevOps Works ... 6
Develop and test against production-like systems 6
Deploy with repeatable, reliable processes 7
Monitor and validate operational quality 8
Amplify feedback loops .. 8

CHAPTER 2: Looking at DevOps Capabilities 9
Paths to DevOps Adoption .. 9
Steer ... 10
Develop/Test ... 11

Collaborative development ... 12
Continuous testing.. 13

Deploy .. 13
Operate .. 14

Continuous monitoring .. 14
Continuous customer feedback and optimization 14

CHAPTER 3: Adopting DevOps ... 15
Knowing Where to Begin ... 15

Identifying business objectives ... 16
Identifying bottlenecks in the delivery pipeline 16

People in DevOps ... 17
DevOps culture.. 17
DevOps team ... 18

Process in DevOps ... 19
DevOps as a business process .. 19
Change management process .. 20
DevOps techniques ... 21

Technology in DevOps ... 24

Table of Contents v

vi DevOps For Dummies, 3rd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Infrastructure as code .. 25
Delivery pipeline ... 26
Deployment automation and release management 28

CHAPTER 4: Looking at How Cloud Accelerates DevOps 31
Using Cloud as an Enabler for DevOps .. 32
Full-Stack Deployments ... 34
Choosing a Cloud Service Model for DevOps 35

IaaS ... 35
PaaS .. 37

Understanding What a Hybrid Cloud Is ... 38

CHAPTER 5: Using DevOps to Solve New Challenges 41
Mobile Applications .. 42
ALM Processes .. 43
Scaling Agile .. 43
Multiple-Tier Applications ... 44
DevOps in the Enterprise .. 45
Supply Chains ... 46
The Internet of Things ... 46

CHAPTER 6: Making DevOps Work: IBM’s Story 49
Taking a Look at the Executive’s Role .. 50
Putting Together the Team ... 51
Setting DevOps Goals .. 51
Learning from the DevOps Transformation 52

Expanding agile practices .. 52
Leveraging test automation ... 53
Building a delivery pipeline .. 54
Experimenting rapidly .. 55
Continuously improving ... 56

Looking at the DevOps Results ... 58

CHAPTER 7: Ten DevOps Myths .. 59
DevOps Is Only for “Born on the Web” Shops 59
DevOps Is Operations Learning How to Code 60
DevOps Is Just for Development and Operations 60
DevOps Isn’t for ITIL Shops ... 60
DevOps Isn’t for Regulated Industries ... 61
DevOps Isn’t for Outsourced Development 61
No Cloud Means No DevOps .. 61
DevOps Isn’t for Large, Complex Systems 62
DevOps Is Only about Communication ... 62
DevOps Means Continuous Change Deployment 62

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Publisher’s Acknowledgments

Some of the people who helped bring this book to market include the following:

Project Editor: Carrie A. Burchfield
Acquisitions Editor: Katie Mohr
Editorial Manager: Rev Mengle

Business Development
Representative: Sue Blessing

Production Editor: Vasanth Koilraj

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Introduction 1

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Introduction

DevOps (short for development and operations), like most
new approaches, is only a buzzword for many people.
Everyone talks about it, but not everyone knows what it is.

In broad terms, DevOps is an approach based on lean and agile
principles in which business owners and the development, opera-
tions, and quality assurance departments collaborate to deliver
software in a continuous manner that enables the business to
more quickly seize market opportunities and reduce the time
to include customer feedback. Indeed, enterprise applications are
so diverse and composed of multiple technologies, databases,
end-user devices, and so on, that only a DevOps approach will be
successful when dealing with these complexities. Opinions differ
on how to use it, however.

Some people say that DevOps is for practitioners only; others say
that it revolves around the cloud. IBM takes a broad and holis-
tic view and sees DevOps as a business-driven software delivery
approach — an approach that takes a new or enhanced busi-
ness capability from an idea all the way to production, providing
business value to customers in an efficient manner and captur-
ing feedback as customers engage with the capability. To do this,
you need participation from stakeholders beyond just the devel-
opment and operations teams. A true DevOps approach includes
lines of business, practitioners, executives, partners, suppliers,
and so on.

About This Book
This book takes a business-centric approach to DevOps. Today’s
fast-moving world makes DevOps essential to all enterprises that
must be agile and lean enough to respond rapidly to changes such
as customer demands, market conditions, competitive pressures,
or regulatory requirements.

If you’re reading this book, we assume that you’ve heard about
DevOps but want to understand what it means and how your com-
pany can gain business benefits from it. This book is geared to
executives, decision makers, and practitioners who are new to the

2 DevOps For Dummies, 3rd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

field of DevOps, who seek more information about the approach,
and who want to cut through the hype surrounding the concept to
get to the meat of it.

Icons Used in This Book
You’ll find several icons in the margins of this book. Here’s what
they mean.

The Tip icon points out helpful information on various aspects of
DevOps.

Anything that has a Remember icon is something that you want
to keep in mind.

The Warning icon alerts you to critical information.

Technical Stuff material goes beyond the basics of DevOps. It isn’t
essential reading, however.

Beyond the Book
You can find additional information about DevOps and IBM’s
approach and services available by visiting the following web
pages:

 » IBM DevOps Solution: ibm.com/devops

 » DevOps — the IBM approach (white paper): ibm.biz/
BdEnBz

 » The Software Edge (study): ibm.co/156KdoO

 » Adopting the IBM DevOps Approach (article): ibm.biz/
adoptingdevops

 » DevOps Services for Bluemix (service): bluemix.net

http://ibm.com/devops
http://ibm.biz/BdEnBz
http://ibm.biz/BdEnBz
http://ibm.co/156KdoO
http://ibm.biz/adoptingdevops
http://ibm.biz/adoptingdevops
https://bluemix.net

CHAPTER 1 What Is DevOps? 3

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

What Is DevOps?

Making any change in “business as usual” is always hard
and usually requires an investment. So whenever an
organization adopts any new technology, methodology,

or approach, that adoption has to be driven by a business need. To
develop a business case for adopting DevOps, you must under-
stand the business need for it, including the challenges that it
addresses. In this chapter, we give you the foundation you need to
start building your case.

Understanding the Business
Need for DevOps

Organizations want to create innovative applications or services
to solve business problems. They may want to address internal
business problems (such as creating a better customer relation-
ship management system) or to help their customers or end-
users (such as by providing a new mobile app).

Many organizations aren’t successful with software projects,
however, and their failures are often related to challenges in soft-
ware development and delivery. Although most enterprises feel
that software development and delivery are critical, a recent IBM
survey of the industry found that only 25 percent believe that their
teams are effective. This execution gap leads to missed business
opportunities.

Chapter 1

IN THIS CHAPTER

 » Seeing a business need for DevOps

 » Finding business value in DevOps

 » Understanding DevOps principles

4 DevOps For Dummies, 3rd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

This problem is further amplified by a major shift in the types of
applications that businesses are required to deliver, from systems
of record to systems of engagement:

 » Systems of record: Traditional software applications are
large systems that function as systems of record, which
contain massive amounts of data and/or transactions and
are designed to be highly reliable and stable. Because these
applications don’t need to change often, organizations can
satisfy their customers and their own business needs by
delivering only one or two large new releases a year.

 » Systems of engagement: With the advent of mobile
communications and the maturation of web applications,
systems of record are being supplemented by systems of
engagement, which customers can access directly and use to
interact with the business. Such applications must be easy to
use, high performing, and capable of rapid change to
address customers’ changing needs and evolving market
forces.

Because systems of engagement are used directly by customers,
they require intense focus on user experience, speed of delivery,
and agility — in other words, a DevOps approach.

Systems of engagement aren’t isolated islands and are often tied
to systems of record, so rapid changes to systems of engagement
result in changes to systems of record. Indeed any kind of sys-
tem that needs rapid delivery of innovation requires DevOps. Such
innovation is driven primarily by emerging technology trends
such as cloud computing, mobile applications, Big Data, and social
media, which may affect all types of systems. We discuss these
emerging technologies in light of DevOps in Chapters 4 and 5.

Recognizing the Business
Value of DevOps

DevOps applies agile and lean principles across the entire software
supply chain. It enables a business to maximize the speed of its
delivery of a product or service, from initial idea to production
release to customer feedback to enhancements based on that
feedback.

CHAPTER 1 What Is DevOps? 5

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Because DevOps improves the way that a business delivers value
to its customers, suppliers, and partners, it’s an essential busi-
ness process, not just an IT capability.

DevOps provides significant return on investment in three areas:

 » Enhanced customer experience

 » Increased capacity to innovate

 » Faster time to value

We discuss all three areas in the following sections.

Enhanced customer experience
Delivering an enhanced (that is, differentiated and engaging)
customer experience builds customer loyalty and increases mar-
ket share. To deliver this experience, a business must continu-
ously obtain and respond to customer feedback, which requires
mechanisms to get fast feedback from all the stakeholders in the
software application that’s being delivered: customers, lines of
business, users, suppliers, partners, and so on.

In today’s world of systems of engagement (see “Understand-
ing the Business Need for DevOps,” earlier in this chapter), this
ability to react and adapt in an agile manner leads to enhanced
customer experience and loyalty.

Increased capacity to innovate
Modern organizations use lean thinking approaches to increase
their capacity to innovate. Their goals are to reduce waste and
rework and to shift resources to higher-value activities.

An example of a common practice in lean thinking is A-B testing, in
which organizations ask a small group of users to test and rate two
or more sets of software that have different capabilities. Then the
better-capability set is rolled out to all users, and the unsuccess-
ful version is rolled back. Such A-B testing is realistic only with
efficient and automated mechanisms such as those that DevOps
facilitates.

6 DevOps For Dummies, 3rd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Faster time to value
Speeding time to value involves developing a culture, practices,
and automation that allow for fast, efficient, and reliable soft-
ware delivery through to production. DevOps, when adopted as
a business capability, provides the tools and culture required to
facilitate efficient release planning, predictability, and success.

The definition of value varies from organization to organization
and even from project to project, but the goal of DevOps is to
deliver this value faster and more efficiently.

Seeing How DevOps Works
The DevOps movement has produced several principles that have
evolved over time and are still evolving. Several solution provid-
ers, including IBM, have developed their own variants. All these
principles, however, take a holistic approach to DevOps, and
organizations of all sizes can adopt them. These principles are

 » Develop and test against production-like systems

 » Deploy with repeatable, reliable processes

 » Monitor and validate operational quality

 » Amplify feedback loops

We describe the principles in more detail in the following sections.

Develop and test against
production-like systems
This principle stems from the DevOps concept shift left, in which
operations concerns move earlier in the software delivery life
cycle, toward development (see Figure 1-1).

The goal is to allow development and quality assurance (QA) teams
to develop and test against systems that behave like the produc-
tion system, so that they can see how the application behaves and
performs well before it’s ready for deployment.

CHAPTER 1 What Is DevOps? 7

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The first exposure of the application to a production-like system
should be as early in the life cycle as possible to address two major
potential challenges. First, it allows the application to be tested
in an environment that’s close to the actual production environ-
ment the application will be delivered to; and second, it allows
for the application delivery processes themselves to be tested and
validated upfront.

From an operations perspective, too, this principle has tremen-
dous value. It enables the operations team to see early in the cycle
how their environment will behave when it supports the applica-
tion, thereby allowing them to create a fine-tuned, application-
aware environment.

Deploy with repeatable,
reliable processes
As the name suggests, this principle allows development and
operations to support an agile (or at least iterative) software
development process all the way through to production. Automa-
tion is essential to create processes that are iterative, frequent,
repeatable, and reliable, so the organization must create a delivery
pipeline that allows for continuous, automated deployment and
testing. We talk more about delivery pipelines in Chapter 3.

Frequent deployments also allow teams to test the deployment
processes themselves, thereby lowering the risk of deployment
failures at release time.

FIGURE 1-1: The shift-left concept moves operations earlier in the
development life cycle.

8 DevOps For Dummies, 3rd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Monitor and validate
operational quality
Organizations typically are good at monitoring applications and
systems in production because they have tools that capture pro-
duction systems’ metrics in real time. But they monitor in a siloed
and disconnected manner. This principle moves monitoring ear-
lier in the life cycle by requiring that automated testing be done
early and often in the life cycle to monitor functional and non-
functional characteristics of the application. Whenever an appli-
cation is deployed and tested, quality metrics should be captured
and analyzed. Frequent monitoring provides early warning about
operational and quality issues that may occur in production.

These metrics should be captured in a format that all business
stakeholders can understand and use.

Amplify feedback loops
One goal of DevOps is to enable organizations to react and make
changes more rapidly. In software delivery, this goal requires an
organization to get quick feedback and then learn rapidly from
every action it takes. This principle calls for organizations to cre-
ate communication channels that allow all stakeholders to access
and act on feedback.

 » Development may act by adjusting its project plans
or priorities.

 » Production may act by enhancing the production
environments.

 » Business may act by modifying its release plans.

CHAPTER 2 Looking at DevOps Capabilities 9

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Looking at DevOps
Capabilities

The capabilities that make up DevOps are a broad set that
span the software delivery life cycle. Where an organization
starts with DevOps depends on its business objectives and

goals — what challenges it’s trying to address and what gaps in
its software delivery capabilities need to be filled.

In this chapter, you look at a DevOps reference architecture and
the various ways that it enables a business to use DevOps.

Paths to DevOps Adoption
A reference architecture provides a template of a proven solution by
using a set of preferred methods and capabilities. The DevOps ref-
erence architectures discussed in this chapter help practitioners
access and use the guidelines, directives, and other material that
they need to architect or design a DevOps platform that accom-
modates people, processes, and technology (see Chapter 3).

A reference architecture provides capabilities through its vari-
ous components. These capabilities in turn may be provided by
a single component or a group of components working together.

Chapter 2

IN THIS CHAPTER

 » Understanding the reference
architecture of DevOps

 » Considering four paths to DevOps
adoption

10 DevOps For Dummies, 3rd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Therefore, you can view the DevOps reference architecture, shown
in Figure 2-1, from the perspective of the core capabilities that it’s
intended to provide. As the abstract architecture evolves to con-
crete form, these capabilities are provided by a set of effectively
enabled people, defined practices, and automation tools.

The DevOps reference architecture shown in Figure 2-1 proposes
the following four sets of adoption paths:

 » Steer

 » Develop/Test

 » Deploy

 » Operate

In the remaining sections of this chapter, you take a detailed look
at these adoption paths.

Steer
This adoption path consists of one practice that focuses on estab-
lishing business goals and adjusting them based on customer
feedback: continuous business planning.

FIGURE 2-1: The DevOps reference architecture.

CHAPTER 2 Looking at DevOps Capabilities 11

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Businesses today need to be agile and able to react quickly to cus-
tomer feedback. Achieving this goal centers on an organization’s
ability to do things right. Unfortunately, traditional approaches to
product delivery are too slow for today’s speed of doing business,
partially because these approaches depend on custom develop-
ment and manual processes and because teams are operating
in silos. Information required to plan and replan quickly, while
maximizing the ability to deliver value, is fragmented and incon-
sistent. Often the right feedback isn’t received early enough to
achieve the right level of quality to truly deliver value.

Teams also struggle to incorporate feedback that should inform
the prioritization of investments and then to collaborate as an
organization to drive execution in a continuous delivery model.
For some teams, planning is viewed as governance overhead
that’s intrusive and slows them down instead of an activity that
enables them to deliver value with speed.

Faster delivery provides greater business agility, but you must
also manage speed with the trust and confidence that what you’ve
delivered is the right thing. You can’t deliver software at speed if
you don’t trust the accuracy of your business goals, your mea-
surements, and your platforms.

DevOps helps to reconcile these competing perspectives, helping
teams collaboratively establish business goals and continuously
change them based on customer feedback, thereby improving
both agility and business outcomes. At the same time, businesses
need to manage costs. By identifying and eliminating waste in
the development process, the team becomes more efficient but
also addresses cost. This approach helps teams strike an optimal
balance between all these considerations, across all phases of the
DevOps life cycle in moving to a continuous delivery model.

Develop/Test
This adoption path involves two practices: collaborative develop-
ment and continuous testing. As such, it forms the core of devel-
opment and quality assurance (QA) capabilities.

12 DevOps For Dummies, 3rd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Collaborative development
Software delivery efforts in an enterprise involve large numbers
of cross-functional teams, including lines-of-business owners,
business analysts, enterprise and software architects, develop-
ers, QA practitioners, operations personnel, security specialists,
suppliers, and partners. Practitioners from these teams work on
multiple platforms and may be spread across multiple locations.
Collaborative development enables these practitioners to work
together by providing a common set of practices and a common
platform they can use to create and deliver software.

One core capability included within collaborative development is
continuous integration (see Figure 2-2), a practice in which soft-
ware developers continuously or frequently integrate their work
with that of other members of the development team.

Continuous integration was made popular by the agile move-
ment. The idea is for developers to regularly integrate their work
with that of the rest of the developers on their team and then test
the integrated work. In the case of complex systems made up of
multiple systems or services, developers also regularly integrate
their work with other systems and services. Regular integration of
results leads to early discovery and exposure of integration risks.
In complex systems, it also exposes known and unknown risks —
both technical and schedule-related.

FIGURE 2-2: Collaboration via continuous integration.

CHAPTER 2 Looking at DevOps Capabilities 13

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Continuous testing
Continuous integration (see the preceding section) has several
goals:

 » Enable ongoing testing and verification of code

 » Validate that the code produced and integrated with that of
other developers and other components of the application
functions and performs as designed

 » Continuously test the application being developed

Continuous testing means testing earlier and continuously across
the life cycle, which results in reduced costs, shortened testing
cycles, and achieved continuous feedback on quality. This pro-
cess is also known as shift-left testing, which stresses integrating
development and testing activities to ensure quality is built in as
early in the life cycle as possible and not something left to later.
This is facilitated by adopting capabilities like automated testing
and service virtualization. Service virtualization is the new capa-
bility for simulation of production-like environments and makes
continuous testing feasible.

Deploy
The Deploy adoption path is where most of the root capabilities
of DevOps originated. Continuous release and deployment take
the concept of continuous integration to the next step. The prac-
tice that enables release and deploy also enables the creation of
a delivery pipeline (see Chapter 3). This pipeline facilitates con-
tinuous deployment of software to QA and then to production in
an efficient, automated manner. The goal of continuous release
and deployment is to release new features to customers and users
as soon as possible.

Most of the tooling and processes that make up the core of DevOps
technology exist to facilitate continuous integration, continuous
release, and continuous deployment. We discuss these topics in
more detail in later chapters.

14 DevOps For Dummies, 3rd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Operate
The Operate adoption path includes two practices that allow busi-
nesses to monitor how released applications are performing in
production and to receive feedback from customers. This data
allows the businesses to react in an agile manner and change their
business plans as necessary.

Continuous monitoring
Continuous monitoring provides data and metrics to operations,
QA, development, lines-of-business personnel, and other stake-
holders about applications at different stages of the delivery cycle.

These metrics aren’t limited to production. Such metrics allow
stakeholders to react by enhancing or changing the features being
delivered and/or the business plans required to deliver them.

Continuous customer feedback
and optimization
The two most important types of information that a software
delivery team can get are data about how customers use the appli-
cation and feedback that those customers provide upon using the
application. New technologies allow businesses to capture cus-
tomer behavior and customer pain points right as they use the
application. This feedback allows different stakeholders to take
appropriate actions to improve the applications and enhance cus-
tomer experience. Lines of business may adjust their business
plans, development may adjust the capabilities it delivers, and
operations may enhance the environment in which the applica-
tion is deployed. This continuous feedback loop is an essential
component of DevOps, allowing businesses to be more agile and
responsive to customer needs.

CHAPTER 3 Adopting DevOps 15

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Adopting DevOps

Adopting any new capability typically requires a plan that
spans people, process, and technology. You can’t succeed
in adopting new capabilities — especially in an enterprise

that has multiple, potentially distributed stakeholders — without
taking into consideration all three aspects of the capabilities being
adopted.

In this chapter, we discuss the people, process, and technology
aspects of DevOps.

Although the name DevOps suggests development-and-operations-
based capabilities, DevOps is an enterprise capability that spans all
stakeholders in an organization, including business owners, archi-
tecture, design, development, quality assurance (QA), operations,
security, partners, and suppliers. Excluding any stakeholder —
internal or external — leads to an incomplete implementation of
DevOps.

Knowing Where to Begin
This section provides guidance on how to get started with
DevOps, including creating the right culture, identifying business
 challenges, and finding bottlenecks to eliminate.

Chapter 3

IN THIS CHAPTER

 » Making people more efficient

 » Streamlining processes

 » Choosing the right tools

16 DevOps For Dummies, 3rd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Identifying business objectives
The first task in creating a culture is getting everyone headed
in the same direction and working toward the same goal, which
means identifying common business objectives for the team and
the organization as a whole. It’s important to incent the entire
team based on business outcomes versus conflicting team incen-
tives. When people know what common goal they’re working
toward and how their progress toward that goal is going to be
measured, fewer challenges exist from teams or practitioners who
have their own priorities.

DevOps isn’t the goal. It helps you reach your goals.

Chapters 4 and 5 highlight several new business challenges that
DevOps addresses. Your organization can use those challenges as
a starting point to identify goals that it wants to achieve; then it
can develop a common set of milestones toward those goals for
different teams of stakeholders to use.

Identifying bottlenecks in the
delivery pipeline
The biggest sources of inefficiencies in the delivery pipeline have
been categorized as the following:

 » Unnecessary overhead (having to repeatedly communicate
the same information and knowledge)

 » Unnecessary rework (defects being uncovered in testing or
production forcing assignments back to the development
team)

 » Over-production (functionality developed that wasn’t
required)

One of the biggest bottlenecks in the delivery pipeline is deploy-
ing infrastructure. The adoption of a DevOps approach increases
the velocity of application delivery and puts pressure on the
infrastructure to respond more quickly. That is where software-
defined environments enable you to capture infrastructure as a
kind of programmable and repeatable pattern, thereby accelerat-
ing deployments. Check out the section “Infrastructure as code”
later in this chapter for more information.

CHAPTER 3 Adopting DevOps 17

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Drilling down further, you may want to optimize the pipeline with
an even flow from end to end. The throughput of each process
must be equal in order to avoid backlogs. To help achieve this bal-
ance, you need to instrument or measure the delivery pipeline at
key points so you can minimize the wait time in backlog queues,
optimize the work in progress, and adjust capacity and flow.

People in DevOps
This section addresses the people aspect of adopting DevOps,
including creating the necessary culture.

DevOps culture
At its root, DevOps is a cultural movement; it’s all about people. An
organization may adopt the most efficient processes or automated
tools possible, but they’re useless without the people who even-
tually must execute those processes and use those tools. Building
a DevOps culture, therefore, is at the core of DevOps adoption.

A DevOps culture is characterized by a high degree of collabo-
ration across roles, focus on business instead of departmen-
tal objectives, trust, and high value placed on learning through
experimentation.

MEASURING CULTURE
Measuring culture is extremely difficult. How do you accurately
 measure improved collaboration or improved morale? You could
take a direct measure of attitudes and team morale by taking surveys,
but surveys can have a high statistical error rate, as teams usually
are small.

Conversely, you can take an indirect measure by tracking how often a
development team member reaches out to a member of an opera-
tions or QA team to collaborate on resolving an issue without going
through official channels or multiple layers of management.

Collaboration and communication across stakeholders — that’s the
culture of DevOps.

18 DevOps For Dummies, 3rd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Building a culture isn’t like adopting a process or a tool. It requires
(for lack of a better term) social engineering of teams of people,
each with unique predispositions, experiences, and biases. This
diversity can make culture-building challenging and difficult.

Lean and agile transformation practices such as Scaled Agile
Framework (SAFe), Disciplined Agile Delivery (DAD), and Scrum
are at the core of DevOps, and if your organization has already
applied these, they can be leveraged to help adopt a DevOps
culture.

Building a DevOps culture requires the leaders of the organization
to work with their teams to create an environment and culture
of collaboration and sharing. Leaders must remove any self-
imposed barriers to cooperation. Typical measurements reward
operations teams for uptime and stability, and reward developers
for new features delivered, but they pit these groups against each
other. Operations knows that the best protection for production
is to accept no changes, for example, and Development has little
incentive to focus on quality. Replace these measurements with
shared responsibility for delivering new capabilities quickly and
safely.

The leaders of the organization should further encourage col-
laboration by improving visibility. Establishing a common set of
collaboration tools is essential, especially when teams are geo-
graphically distributed and can’t work together in person. Giving
all stakeholders visibility into a project’s goals and status is cru-
cial for building a DevOps culture based on trust and collaboration.

Sometimes, building a DevOps culture requires people to change.
Those who are unwilling to change — that is, to adopt the DevOps
culture — may need to be reassigned.

DevOps team
The arguments for and against having a separate DevOps team are
as old as the concept itself. Some organizations, such as Netflix,
don’t have separate development and operations teams; instead,
a single “NoOps” team owns both sets of responsibilities. Other
organizations have succeeded with DevOps liaison teams, which
resolve any conflicts and promote collaboration. Such a team may
be an existing tools group or process group, or it may be a new

CHAPTER 3 Adopting DevOps 19

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

team staffed by representatives of all teams that have a stake in
the application being delivered.

If you choose to have a DevOps team, your most important
goal is to ensure that it functions as a center of excellence that
 facilitates collaboration without adding a new layer of bureau-
cracy or becoming the team that owns addressing all DevOps
related problems — a development that would defeat the purpose
of adopting a DevOps culture.

Process in DevOps
In the preceding section, we discuss the role of people and cul-
ture in adopting DevOps. Processes define what those people do.
Your organization can have a great culture of collaboration, but if
people are doing the wrong things or doing the right things in the
wrong way, failure is still likely.

A vast number of processes are identified with DevOps — too
many to cover in this book. This section discusses some of the key
processes in light of their adoption across an enterprise.

DevOps as a business process
DevOps as a capability affects a whole business. It makes the
business more agile and improves its delivery of capabilities to
customers. You can extend DevOps further by looking at it as a
business process: a collection of activities or tasks that produces a
specific result (service or product) for customers.

In the reference architecture introduce in Chapter 2, the DevOps
business process involves taking capabilities from the idea (typi-
cally identified with business owners) through development and
testing to production.

Although this business process isn’t mature enough to be captured
in a set of simple process flows, you should capture the process
flows that your organization already uses to deliver capabilities.
Then you can identify areas of improvement, both by improving
the processes themselves and by introducing automation (see the
“Technology in DevOps” section, later in this chapter).

20 DevOps For Dummies, 3rd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Change management process
Change management is a set of activities designed to control, man-
age, and track change by identifying the work products that are
likely to change and the processes used to implement that change.
The change management process that an organization uses is an
inherent part of the broader DevOps process flow. Change man-
agement drives the way the DevOps processes absorb and react to
change requests and customer feedback.

Organizations that have adopted application life cycle manage-
ment (ALM) already have well-defined and (probably) automated
change management processes in place.

Change management should include processes that enable the
following capabilities:

 » Work-item management

 » Configurable work-item workflows

 » Project configuration management

 » Planning (agile and iterative)

 » Role-based artifact access control

Traditional change management approaches tend to be limited to
change request or defect management, with limited capability to
trace the events between the change requests or defects and the
associated code or requirements. These approaches don’t provide
integrated work-item management across the life cycle or built-
in capability to trace all types of assets. DevOps, however, requires
all stakeholders to be able to view and collaborate on all changes
across the software development life cycle.

DevOps- or ALM-centric change management includes processes
that provide work-item management for all projects, tasks, and
associated assets — not just those affected by change requests
or defects. It also includes processes that enable the enterprise
to link work items to all artifacts, project assets, and other work
items that are created, modified, referenced, or deleted by any
practitioner who works on them. These processes give team
members role-based access to all change-related information and
also support iterative and agile project development efforts.

CHAPTER 3 Adopting DevOps 21

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps techniques
Following are a few specific techniques that you need to include
when you adopt DevOps:

 » Continuous improvement

 » Release planning

 » Continuous integration

 » Continuous delivery

 » Continuous testing

 » Continuous monitoring and feedback

The following sections examine these techniques in detail.

Continuous improvement
In true lean-thinking fashion, process adoption isn’t a one-time
action; it’s an ongoing process. An organization should have built-
in processes that identify areas for improvement as the organi-
zation matures and learns from the processes it has adopted.
Many businesses have process improvement teams that work on
improving processes based on observations and lessons learned;
others allow the teams that adopt the processes to self-assess and
determine their own process-improvement paths. Regardless of
the method used, the goal is to enable continuous improvement.

Release planning
Release planning is a critical business function, driven by busi-
ness needs to offer capabilities to customers and the timelines of
these needs. Therefore, businesses require well-defined release
planning and management processes that drive release road
maps, project plans, and delivery schedules, as well as end-to-
end traceability across these processes.

Most companies today accomplish this task by using spreadsheets
and holding meetings (often, long ones) with all stakeholders
across the business to track all business needs applications under
development, their development status, and release plans. Well-
defined processes and automation, however, eliminate the need
for those spreadsheets and meetings, and enable streamlined

22 DevOps For Dummies, 3rd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

and — more importantly — predictable releases. Leveraging lean
and agile practices also results in smaller, more frequent releases,
permitting enhanced focus on quality.

Continuous integration
Continuous integration (described in Chapter 2) adds tremendous
value in DevOps by allowing large teams of developers, working
on cross-technology components in multiple locations, to deliver
software in an agile manner. It also ensures that each team’s
work is continuously integrated with that of other development
teams and then validated. Continuous integration thereby reduces
risk and identifies issues earlier in the software development life
cycle.

Continuous delivery
Continuous integration naturally leads to the practice of con-
tinuous delivery: the process of automating the deployment of
the software to the testing, system testing, staging, and pro-
duction environments. Although some organizations stop short
of production, those that adopt DevOps generally use the same
automated process in all environments to improve efficiency and
reduce the risk introduced by inconsistent processes.

In test environments, automating configuration, refreshing test
data, and then deploying the software to the test environment
followed by the execution of automated tests speeds feedback
cycles of test results back to development.

Adopting continuous delivery typically is the most critical part of
adopting DevOps. To many DevOps practitioners, DevOps is lim-
ited to continuous delivery, so most tools promoted as DevOps
tools address only this process. As you see throughout this book,
however, DevOps is much broader in scope. Continuous delivery
is an essential component of DevOps but not the only component.

Based on your organization’s business needs and pressing chal-
lenges, you may choose to start adoption with another of the
 processes or adoption paths described in Chapter 2.

CHAPTER 3 Adopting DevOps 23

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Continuous testing
We introduce continuous testing in Chapter 2. From a process
perspective, you need to adopt processes in three areas to enable
continuous testing:

 » Test environment provisioning and configuration

 » Test data management

 » Test integration, function, performance, and security

In an organization, QA teams need to determine what processes
to adopt for each area. The processes that they adopt may vary
from project to project, based on individual testing needs and on
the requirements of service level agreements. Customer-facing
applications may need more security testing than internal appli-
cations do, for example. Test environment provisioning and test
data management are more important challenges for projects
that use agile methodologies and practice continuous integration
than they are for projects that use waterfall methodology and test
only once every few months. Likewise, function and performance
test requirements for complex applications with components that
have different delivery cycles are different from those for simple,
monolithic web apps.

Continuous monitoring and feedback
Customer feedback comes in different forms, such as tickets
opened by customers, formal change requests, informal com-
plaints, and ratings in app stores. Especially due to the popu-
larity of social media and app stores (see Chapter 5), businesses
need well-defined processes to absorb the feedback from myriad
sources and incorporate them into software delivery plans. These
processes also need to be agile enough to adapt to market and
regulatory changes.

Feedback also comes from monitoring data. This data comes from
the servers running the application; from Development, QA, and
Production; or from metrics tools embedded in the application
that capture user actions.

Data overload is possible, so businesses need data-capture and
data-use processes that enhance their applications and the
 environments they run in.

24 DevOps For Dummies, 3rd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Technology in DevOps
Technology enables people to focus on high-value creative work
while delegating routine tasks to automation. Technology also
allows teams of practitioners to leverage and scale their time and
abilities.

If an organization is building or maintaining multiple applica-
tions, everything it does has to be repeatable, in a reliable man-
ner, to ensure quality across all applications. It can’t start from
scratch with each new release or bug fix for every application. The
organization has to reuse assets, code, and practices to be cost-
effective and efficient.

Standardizing automation also makes people more effective (see
“People in DevOps,” earlier in this chapter). Organizations may
experience turnover in employees, contractors, or resource pro-
viders; people may move from project to project. But a common
set of tools allows practitioners to work anywhere, and new team
members need to learn only one set of tools — a process that’s
efficient, cost-effective, repeatable, and scalable.

MEASURING PROCESS ADOPTION
You can measure the success of process adoption by seeing whether
a set of efficiency and quality metrics is improving over time. This type
of measurement has two prerequisites:

• You must identify the right set of efficiency and quality metrics.
These metrics should really matter to the business.

• You need to establish a baseline against which to measure
improvement.

You can use any of several well-defined frameworks to measure
 process maturity. For DevOps-specific processes, models such as
the new IBM DevOps Maturity Model can assess maturity. More
 information about the IBM maturity model is available at ibm.biz/
adoptingdevops.

http://ibm.biz/adoptingdevops
http://ibm.biz/adoptingdevops

CHAPTER 3 Adopting DevOps 25

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Infrastructure as code
Infrastructure as code is a core capability of DevOps that allows
organizations to manage the scale and the speed with which
 environments need to be provisioned and configured to enable
continuous delivery.

Evolving around the notion of infrastructure as code is the notion
of software-defined environments. Whereas infrastructure as code
deals with capturing node definitions and configurations as code,
software-defined environments use technologies that define
entire systems made up of multiple nodes — not just their con-
figurations, but also their definitions, topologies, roles, relation-
ships, workloads and workload policies, and behavior.

Three kinds of automation tools are available for managing infra-
structure as code:

 » Application- or middleware-centric tools: These tools
usually are capable of managing as code both application
servers and the applications that run on them. Such tools are
specialized, bundled with libraries of typical automation
tasks for the technologies that they support. They can’t
perform low-level tasks such as configuring an operating-
system (OS) setting, but they can fully automate server and
application-level tasks.

 » Environment and deployment tools: These tools are a new
class of tools that have the capability to deploy both the
infrastructure configurations and application code.

 » Generic tools: These tools aren’t specialized for any
technology and can be scripted to perform several kinds of
tasks, all the way from configuring an OS on a virtual or
physical node to configuring firewall ports. They require
much more work up front than application- or middleware-
centric tools do, but they can handle a greater range of tasks.

By using an environment management and deployment tool like
IBM UrbanCode Deploy with Patterns, organizations can design,
deploy, and reuse environments quickly and help accelerate the
delivery pipeline.

26 DevOps For Dummies, 3rd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Delivery pipeline
A delivery pipeline consists of the stages an application goes
through from development through to production. Figure 3-1
shows a typical set of stages. These stages may vary from one
organization to another, however, and may also vary from one
application to another based on the organization’s needs, soft-
ware delivery process, and maturity. The level of automation may
also vary. Some organizations fully automate their delivery pipe-
lines; others put their software through manual checks and gates
due to regulatory or company requirements. You don’t have to
address all stages at once. Start by focusing on the critical parts of
organization — not everything all at once — and then gradually
broaden to include all stages.

A typical delivery pipeline has the stages described in the follow-
ing sections.

Development environment
An application’s development effort takes place in a develop-
ment environment, which provides multiple tools that enable the
developers to write and test code. Beyond the integrated develop-
ment environment (IDE) tools that developers use to write code,
this stage includes tools that enable collaborative development,
such as tools for source control management, work-item man-
agement, collaboration, unit testing, and project planning. Tools
in this stage typically are cross-platform and cross-technology,
based on the type of development being undertaken.

Build stage
The build stage is where the code is compiled to create and unit test
the binaries to be deployed. Multiple build tools may be used in

FIGURE 3-1: Stages of a typical DevOps delivery pipeline.

CHAPTER 3 Adopting DevOps 27

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

this stage, based on cross-platform and cross-technology needs.
Development organizations typically use build servers to facilitate
the large number of builds required on an ongoing basis to enable
continuous integration.

Package repository
A package repository (also referred to as an asset repository or artifact
repository) is a common storage mechanism for the binaries cre-
ated during the build stage. These repositories also need to store
the assets associated with the binaries to facilitate their deploy-
ment, such as configuration files, infrastructure-as-code files,
and deployment scripts.

Test environment
A test environment is where the QA, user acceptance, and development/
testing teams do the actual testing. Many flavors of tools are used in
this stage, based on QA needs. Here are a few examples:

 » Test environment management: These tools facilitate
provisioning and configuring the test environments. They
include infrastructure-as-code technologies and (if the
environment is in the cloud) cloud provisioning and
 management tools.

 » Test data management: For any organization that wants to
enable continuous testing, managing test data is an essential
function. The number of tests that can be run and the
frequency with which they’re run are limited by the amount
of data that’s available for testing and the speed at which
that data can be refreshed.

 » Test integration, function, performance, and security:
Automated tools are available for each of these types of tests.
These tools should be integrated with a common test asset
management tool or repository where all test scenarios, test
scripts, and associated results can be stored and traceability
established back to code, requirements, and defects.

 » Service virtualization: Modern applications aren’t simple,
monolithic applications. They’re complex systems that are
dependent on other applications, application servers,
databases, and even third-party applications and data
sources. Unfortunately, at test time, these components may
be unavailable or costly. Service virtualization solutions
simulate the behavior — functionality and performance — of

28 DevOps For Dummies, 3rd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

select components within an application to enable end-to-
end testing of the application as a whole. These tools create
stubs (virtual components) of the applications and services
that are required for the tests to run. The behavior and
performance of the application can be tested as it interacts
with these stubs. IBM’s Rational Test Virtualization Server
provides such test virtualization capabilities.

Stage and production environments
Applications are deployed in the staging and production
 environments. Tools used in these stages include environment
management and provisioning tools. Tools for infrastructure as
code also play a critical role in these stages, due to the large scale
at which the environment in these stages exist. With the advent of
 virtualization and cloud technologies, stage and production envi-
ronments can today be made up of hundreds or even thousands
of servers. Monitoring tools allow organizations to monitor the
deployed applications in production.

Deployment automation and release
management
Managing the automation of application deployment from one
stage to the next requires specialized tools, some of which we
discuss in the following sections.

Deployment automation
Deployment automation tools are the core tools in the DevOps
space. Such tools perform orchestrated deployments and track
which version is deployed on which node at any stage of the build
and delivery pipeline. They can also manage the configurations of
the environments of all the stages to which the application com-
ponents must be deployed.

Deployment automation tools manage the software components
that get deployed, the middleware components and middleware
configurations that need to be updated, the database components
that need to be changed, and the configuration changes to the
environments to which these components are to be deployed.
These tools also capture and automate the processes to carry out
these deployments and configuration changes. IBM UrbanCode
Deploy is such a deployment automation tool.

CHAPTER 3 Adopting DevOps 29

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Release management
Orchestrating the release plans and deployments associated with
each release requires coordination across the business, develop-
ment, QA, and operations teams. Release management tools allow
organizations to plan and execute releases, provide a single col-
laboration portal for all stakeholders in a release, and provide
traceability for a release and its components across all stages of
the build and delivery pipeline. IBM UrbanCode Release provides
such release management capabilities.

MEASURING TECHNOLOGY
ADOPTION
Measuring return on investment tools and technology is fairly
straightforward. Typically, you can measure the efficiencies created by
automation. Also, automated tools allow you to enhance the scalabil-
ity and reliability of tasks — something that isn’t always possible with
manual tools. Finally, using an integrated set of automated tools facili-
tates collaboration, traceability, and improved quality.

30 DevOps For Dummies, 3rd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

CHAPTER 4 Looking at How Cloud Accelerates DevOps 31

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Looking at How Cloud
Accelerates DevOps

DevOps and cloud are both catalysts and enablers for each
other. As organizations adopt cloud, the value proposition
of leveraging cloud for hosting a DevOps workload becomes

self-evident. The flexibility, resilience, agility, and the services a
cloud platform brings allow for streamlining an application deliv-
ery pipeline hosted on the cloud. Environments from develop-
ment through testing and all the way to production can be
provisioned and configured as needed and when needed. This
process minimizes the environment-related bottlenecks in the
delivery process. Organizations are also looking to leverage cloud
platforms for either reducing the cost of development and test
environments or to provide a modern streamlined developer
experience for their practitioners. These make for an extremely
compelling business case for cloud adoption with and for DevOps.

This chapter explores different models of cloud for DevOps and
examines the value proposition of DevOps as a workload on cloud.

Chapter 4

IN THIS CHAPTER

 » Using cloud as an enabler for DevOps

 » Understanding full-stack deployments

 » Looking at different cloud service models

 » Uncovering the hybrid cloud

32 DevOps For Dummies, 3rd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Using Cloud as an Enabler for DevOps
The main goal of DevOps is to minimize bottlenecks in the deliv-
ery pipeline, making it more efficient and lean. One of the big-
gest bottlenecks that organizations experience is for environment
availability and configuration. It isn’t uncommon for practitio-
ners, especially developers and testers, to requisition an environ-
ment through a formal ticketing process, and this process request
can take days if not weeks to fulfill.

One of the tenets of DevOps is to develop and test on a production-
like environment. Adding to the bottleneck of environment avail-
ability is the challenge of the available environment not matching
the production environment. This mismatch may be just as sim-
ple as differences in configuration of the environment — at the
operating system (OS) or middleware level — or as drastic as a
completely different OS or middleware type on the development
environments from what is used in production.

The lack of availability of environments results in potentially
significant wait times for practitioners. The mismatch between
development and production environments can introduce sig-
nificant quality issues because the developers can’t verify how
the application being developed will behave in the production
 environment, or if it can even be deployed to production through
the processes used to deploy to test environments.

Cloud addresses these problems in the following ways:

 » The speed of environment provisioning on cloud platforms
can provide practitioner self-service to the practitioners with
on-demand environment availability and access.

 » The ability to dynamically provision and de-provision these
environments as needed allows for better environment
management and cost reduction by reducing the need for
permanent, static test environments.

 » The ability to leverage “pattern” technologies that allow
organizations to define and version environments as
software allows for the availability of provisioning environ-
ments that match the practitioners’ needs — and more
importantly are production-like environments.

CHAPTER 4 Looking at How Cloud Accelerates DevOps 33

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » From an automation perspective, the availability of applica-
tion deployment automation technologies such as IBM
UrbanCode Deploy can, with one tool, provision the cloud
environment and deploy the right versions of applications to
these environments as and when needed. They can also
rapidly configure the environment and the application to
match the needs of the practitioners.

 » The availability of service virtualization technology, such as
IBM Rational Test Virtualization Server, operating in conjunc-
tion with cloud environments, allows for the simulation of
services that are needed for testing without having to
provision real instances of the services.

Figure 4-1 shows how cloud environments work in conjunction
with deployment automation and service virtualization technolo-
gies to provide end-to-end Develop/Test environments.

Cloud without DevOps means not leveraging all the benefits of
cloud. Adopting DevOps with environments hosted in the cloud
enable the capabilities that provide the full benefit of cloud to
organizations delivering software applications.

FIGURE 4-1: End-to-end Develop/Test in the cloud.

34 DevOps For Dummies, 3rd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Full-Stack Deployments
Deploying a cloud application consists of deploying the applica-
tion and configuring the cloud environment on which it runs.
These two tasks can be performed separately, but when they’re
combined, this is known as a full-stack deployment. We discuss
these two approaches in more detail in this section.

The first approach is to separate the cloud environment provi-
sioning from application deployment. In this scenario, there is no
single point of orchestration of cloud environments and the appli-
cations that are deployed on them. The application deployment
automation tool simply sees cloud environments as static environ-
ments. This scenario doesn’t maximize the benefits of deploying
to cloud.

The second approach is to leverage the deployment automa-
tion tool as the single orchestration tool for cloud environment
 provisioning and application deployment to the environments
provisioned. You can achieve this by creating “blueprints” that
capture the cloud environment definition and topology and then
map the application components and configurations to the nodes
defined in the cloud environment.

Multiple pattern technologies such as the IBM Virtual System
Patterns and OpenStack HOT templates can be used to define
the cloud environments as templates. Deployment automation
tools such as IBM UrbanCode Deploy with Patterns can deliver
full-stack provisioning using these blueprints. This includes
 provisioning the cloud environment defined in the blueprint and
deploying the application to the provisioned environment. After
the environment is provisioned, further application, configura-
tion, and content changes can be continuously deployed to the
cloud environment as updates.

Alternatively, organizations can choose to always have full-stack
deployment where environments and the associated applications
are always provisioned together as one deployable asset. In this
case, no updates are made to the existing environment.

CHAPTER 4 Looking at How Cloud Accelerates DevOps 35

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Choosing a Cloud Service Model
for DevOps

When adopting cloud, you first want to decide on the scope of
responsibility that you plan to hand over to the cloud platform
and what responsibility you want to take on yourself. There are
two primary service models for cloud: Infrastructure as a Service
(IaaS) and Platform as a Service (PaaS).

IaaS
When adopting cloud under an IaaS model, the cloud platform
manages the underlying infrastructure and provides you with
capabilities and services that allow you to manage all the virtual-
ized infrastructure. The installation, patching, and management
of the OS, middleware, data, and application remain the respon-
sibility of the user.

In the context of adopting DevOps as a workload on cloud, the
decision of which cloud service model to use determines how
DevOps is adopted. For an IaaS model, the user organization is
responsible for managing the entire delivery pipeline. All the tools
and integrations of the delivery pipeline become the responsibil-
ity of the user organization, including acquiring the right toolset
and ensuring they’re integrated to form the delivery pipeline. In
addition, they need to ensure that the collaboration between the
development and the operations teams follows a DevOps culture.
Just because a cloud platform is utilized doesn’t change the need
to remove the silos of responsibilities between the developers
delivering the code and the operations teams delivering the infra-
structure, now as a cloud-based service.

While the cloud adds tremendous value in terms of providing
IaaS to application delivery teams, they still need to have all the
right DevOps capabilities in place to deliver the desired value that
DevOps brings.

36 DevOps For Dummies, 3rd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

SEPARATION OF DUTIES
One of the key questions when leveraging DevOps on IaaS cloud is to
define the separation of duties between the cloud platform and the
application deployment tool. Which tool is responsible for what? An
easy way to look at it is from a perspective of slow and fast moving
assets in the cloud stack. The figure shows the different layers of an
application stack from the OS, storage, and network layer all the way
up to the application.

The application, data, and middleware configuration layers are fast
moving in nature. These change often because the application, its
data, and its usage iterate. This velocity of change can be very high for
an application still under development. The lower layers under this
include the middleware (application server, database, and so on), the
OS, and storage, and they don’t change as often. Because updating
and reprovisioning all the layers for a simple change that just impacts
the application, its content, or configuration isn’t efficient, it makes
sense to separate the duties of these fast versus slow moving layers
between an application deployment and cloud management tool. The
fast moving layers are managed and automated by the application
deployment tool and the slow moving layers by the cloud manage-
ment software provided by the cloud platform.

CHAPTER 4 Looking at How Cloud Accelerates DevOps 37

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

PaaS
When adopting a PaaS cloud model, your only responsibility as
the user becomes the application and data. All other capabili-
ties are provided by the cloud platform as services. The result is
a significantly enhanced practitioner experience for the appli-
cation delivery teams. The application development and testing
tools are now available as services on the platform that can be
accessed by the practitioners. The application delivery organiza-
tion is no longer responsible for managing the delivery pipeline.
Instead, it’s embedded in the PaaS and allows for practitioners to
focus exclusively on rapidly delivering applications. The devel-
opment and test tools and the infrastructure provisioning are
all abstracted from the practitioners as services, which allows
the practitioners to focus on their core duties of delivering
applications.

IBM Bluemix is a PaaS. IBM and its partners manage the plat-
form and the services provided on it. The platform embeds IBM
DevOps Services — a set of services providing all the capabilities
for teams to adopt DevOps, and more specifically, an application
delivery pipeline as a set of services. Application delivery teams
can use the services without any concern about how the services
are hosted and delivered to them. The DevOps services include the
following:

 » Web-based Integrated Development Environment (IDE)
as a service

 » Build as a service

 » Planning and task management as a service

 » Security scanning as a service

 » Deploy as a service

 » Monitoring and analytics as a service

The platform also provides scalable runtime environments for
applications running in different environments in the delivery
life cycle — from development, testing, and staging all the way
to production.

38 DevOps For Dummies, 3rd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Understanding What a Hybrid Cloud Is
Hybrid cloud has become an extremely common term in the
cloud space. It’s probably overused to describe multiple cloud
scenarios where either multiple cloud technologies coexist or
where cloud and physical infrastructure coexists. A simple way to
define hybrid cloud is to start by looking at these myriad cloud
scenarios:

 » Cloud and physical infrastructure: This is an extremely
common hybrid cloud scenario. Unless an organization is
born on the cloud, this is actually the default scenario. All
given organizations have workloads and applications that
are currently running on their existing physical infrastruc-
ture. In many cases, some of these applications continue to
run on physical infrastructure. Typical examples include
mainframe applications and data heavy system of record
applications that aren’t going to be migrated to the cloud,
because of technology or cost constraints. Even if an
organization is migrating all its workloads to the cloud, the
migration can’t take place overnight and will have a poten-
tially extensive period where the physical and the cloud
infrastructures will coexist.

 » On-premise and off-premise cloud: In this scenario, an
organization may adopt both an off-premise cloud (public
or virtual-private) for some applications and workloads and
an on-premise (private) cloud for others. An example would
be an organization that’s leveraging low-cost off-premise
cloud for development environments and an on-premise
self-managed cloud in its own data center for all production
workloads.

 » IaaS and PaaS: This scenario includes customers that
have adopted a PaaS cloud model for some workloads —
new innovative systems of engagement type applications, for
example — and IaaS for more traditional system of record
workloads.

For DevOps adoption, the existence of hybrid cloud intro-
duces new challenges because it results in application delivery
pipelines that span across complex hybrid cloud and physical

CHAPTER 4 Looking at How Cloud Accelerates DevOps 39

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

environments. Examples of these hybrid cloud environments
include the following:

 » An organization may choose to use a public cloud for the
development, testing, and other non-production environ-
ments, while using an on-premise cloud or even physical
infrastructure for production.

 » An organization may have some system of engagement
applications deployed to a cloud environment, while the
systems of record applications that provide back-end
services for the core business applications may still reside on
physical infrastructure, such as a mainframe.

 » Organizations may leverage a public PaaS for experimenta-
tion with innovative applications and want to bring them to
a private cloud, once an experiment succeeds.

 » Organizations may want to have portability of application
workloads across multiple cloud platforms in order to
ensure vendor lock-in doesn’t exist or to provide the ability
to deploy critical workloads across multiple cloud vendors.

The core requirement for adopting DevOps with a hybrid cloud
approach is the need for application deployment across these
multiple cloud and physical environments. Applications like IBM’s
UrbanCode Deploy with Patterns utilize application blueprints to
map applications and configurations to multiple environments,
physical and cloud, allowing for automated application deploy-
ment across complex, hybrid cloud environments.

40 DevOps For Dummies, 3rd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

CHAPTER 5 Using DevOps to Solve New Challenges 41

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Using DevOps to Solve
New Challenges

DevOps originated in so-called born on the web companies
(companies that originated on the Internet) such as Etsy,
Flickr, and Netflix. These companies, while solving com-

plex technology challenges at a very large scale, had fairly simple
architectures — unlike large enterprises that grew around legacy
systems and/or through acquisitions and mergers, with complex
multi-technology systems that had to work together. These chal-
lenges are further aggravated by the demands being put on mod-
ern enterprises by new technologies like mobile and application
delivery models such as software supply chains.

This chapter explores some of these challenges that enterprises
face and that DevOps can help solve.

Chapter 5

IN THIS CHAPTER

 » Enabling mobile applications

 » Dealing with ALM processes

 » Scaling agile

 » Managing multiple-tier applications

 » Looking at DevOps in the enterprise

 » Working with supply chains

 » Navigating the Internet of Things

42 DevOps For Dummies, 3rd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Mobile Applications
In an enterprise, mobile apps are typically not stand-alone apps.
They have very little business logic on the mobile device itself
and serve more as front-ends to multiple enterprise applica-
tions already in use by the enterprise. These back-end enterprise
applications may range from transaction processing systems to
employee portals to customer acquisition systems. Mobile devel-
opment and delivery is complex and requires a set of dependent
services to be delivered in a coordinated fashion in a reliable and
efficient manner.

For enterprise mobile apps, release cycles and new feature releases
need to be coordinated with those of the enterprise applications
and services that the mobile apps interact with. Therefore, DevOps
adoption should include mobile-app teams as first-class citizens
and participants along with the rest of the enterprise software
development teams.

DEVOPS AND APP STORES
One unique aspect of mobile apps is the need for deployment to
app stores. Most mobile apps can’t be deployed directly to mobile
devices; they have to go through a vendor-managed app store. Apple
introduced this distribution format with its App Store (and locked its
devices to prevent direct installation of apps by app developers or
vendors). Device manufacturers such as Research In Motion, Google,
and Microsoft, which once allowed direct app installation, now follow
the Apple model.

This situation adds an asynchronous step to the deployment process.
Developers can no longer deploy updates to an app on demand.
Even for critical bug fixes, new app versions have to go through an
app store’s submission and review processes. Continuous delivery
becomes submitting and waiting. Continuous deployment to develop-
ment and testing remains available, however, with the test environ-
ment being simulators for the devices on which the application will be
deployed or banks of physical devices.

CHAPTER 5 Using DevOps to Solve New Challenges 43

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Eighty percent of the world’s corporate data originates on the
mainframe, and 70 percent of all transactions touch a mainframe.
Unlocking a mobile path to these mainframe capabilities can trans-
form the way you conduct business and engage with customers,
but getting there can be challenging. You may be confronted with
skill gaps, organizational silos, and multiple platforms that result
in long release cycles, unnecessary delays, and wasted resources.
To provide mobile access to enterprise applications, businesses
are embracing DevOps, a software delivery approach that focuses
on speed and efficiency without sacrificing stability and quality.

No specific DevOps concepts or principles apply solely to mobile
apps. Mobile apps, however, add to the need for DevOps because
of their inherent short development life cycles and rapid change.

ALM Processes
Application life cycle management (ALM) is a set of processes
employed to manage the life of an application as it evolves from
an idea (a business need) to an application that’s deployed and
eventually under maintenance. Hence, looking at DevOps as an
end-to-end business capability makes ALM the fundamental
concept underlying the DevOps process. DevOps broadens the
scope of ALM to include business owners, customers, and opera-
tions as part of the process.

The DevOps Develop/Test adoption path (see Chapter 2 for more
info) most closely aligns with the traditional ALM capabilities of
requirements management, change management, version con-
trol, traceability, and test management. However, other ALM
capabilities such as tracking and planning occur as part of the
Steer adoption path, and dashboards and reporting are included
in the Operate adoption path.

Scaling Agile
Lean and agile development are the underpinnings of the DevOps
approach — waste reduction from more efficient teams is one
of the results. Efficiency and repetition of best practices lead to
shorter development cycles, allowing teams to be more innovative

44 DevOps For Dummies, 3rd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

and responsive, thereby increasing customer value. Scaling lean
and agile principles beyond the development team to a team of
teams and across the entire product and software delivery life
cycle is core to the DevOps approach.

Many teams have already adopted agile and want to scale their
current processes as part of their DevOps adoption. Many popular
frameworks are available to help scale agile. These frameworks
include the Scaled Agile Framework (SAFe) and Disciplined Agile
Delivery (DAD). Some organizations have also been effective at
scaling the Scrum process to very large teams. The purpose of
these frameworks is to provide a methodology for adopting agile
at the enterprise level. That means taking into consideration not
just the development of code but also including architecture, proj-
ect funding, and governance of the processes and roles required
by management, applying the very same lean and agile principles
that have worked well at the team level. No matter the framework
used to scale agile, you take those basic agile principles and apply
best practices to leverage them to drive efficiency and effective-
ness across the enterprise.

Multiple-Tier Applications
In a typical large IT shop, it’s not uncommon to find multiple-tier
applications that span many platforms, each with its own unique
development process, tools, and skill requirements. These multi-
tier systems often integrate applications on the web, desktop, and
mobile applications on the front-end and back-end systems such
as packaged applications, data warehouse systems, applications
running on mainframes, and midrange systems. Managing and
coordinating the releases of the parts of multiple-tier systems,
many of which may be on different platforms, can be overwhelm-
ing even for the most disciplined IT organization.

A sensible approach is to follow automated, consistent build, con-
figure, and deployment processes through all stages of develop-
ment. This approach ensures that you’re building all the parts you
need — and only the parts you need. It also ensures that the appli-
cation remains whole as changes come in and the project moves
through the cycle of testing, QA, and production. IBM UrbanCode
Deploy has an application model that helps automate the complex
deployment of multiple-tier applications.

CHAPTER 5 Using DevOps to Solve New Challenges 45

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Maintaining separate tools for different teams based on platform
is a reality in today’s multi-platform, multi-vendor world. This
is where open platforms such as IBM Jazz can integrate dispa-
rate tools to provide a unified solution. Consistent deployment
practices can help ensure that teams are using reliable, repeatable
deployment across platforms to provide true business value.

DevOps in the Enterprise
Today’s enterprise depends on the speed with which IT can deliver
software. These businesses typically operate systems of record
applications (homegrown or packaged apps) deployed on main-
frame and midrange systems. They face many challenges:

 » Regulatory hurdles

 » Process complexity

 » Skills gaps

 » Organizational silos

 » Platforms and tools that result in long release cycles,
unnecessary delays, and wasted resources

DevOps at the enterprise level enables planning, development,
testing, and operations stakeholders to continuously deliver soft-
ware within their organizations. Enterprises today deploy applica-
tions that are truly cross-platform — from mobile to mainframe.
The DevOps approach to development uses lean principles to cre-
ate an efficient and effective delivery pipeline that allows appli-
cations to be developed, tested, and delivered as it helps raise the
quality, increase the speed, and reduce the costs of development.

Given the true multi-platform nature of today’s enterprises,
with the presence of mobile, cloud, distributed, and mainframe
 applications — all of which need to be created, integrated, deployed,
and operated — the need for the efficiencies, streamlining, and
collaboration that DevOps provides is becoming a key competitive
differentiator.

46 DevOps For Dummies, 3rd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Supply Chains
With the increasing use of outsourcing and strategic partnerships
to supply skills and capabilities to an enterprise, software sup-
ply chains are becoming the norm. A supply chain is a system of
organizations, people, technology, activities, information, and
resources involved in moving a product or service from supplier
to customer. The various suppliers in the chain may be internal or
external to the enterprise.

In an organization that has adopted a supply-chain model for
delivering software, adopting DevOps can be a challenge, because
the relationships among suppliers are managed more by contracts
and service level agreements than by collaboration and commu-
nication. Such an organization can still adopt DevOps, however.
The core project teams retain ownership of the planning and
measurement capabilities, with other capabilities being shared
among the other suppliers. In the delivery pipeline, different sup-
pliers may own different stages of the pipeline. Using common
tool sets and a common asset repository is therefore essential. A
work-item management tool, for example, provides reporting on
all items being worked on by all suppliers, as well as transfer of
ownership of work items across suppliers. Using a common asset
repository provides a mechanism for passing assets through the
pipeline, enabling continuous delivery.

The Internet of Things
The next big step for DevOps is its evolution into the systems or
embedded-devices space where it’s often referred to as continuous
engineering. When the Internet started, most of the data shared on
it was human-generated. Today, innumerable Internet-connected
devices (such as sensors and actuators) generate much more data
than humans do. This network of inter-connected devices on the
Internet is commonly referred to as the Internet of Things.

In this space, DevOps is potentially even more essential, because
of the co-dependence of the hardware and the embedded soft-
ware that runs on it. DevOps principles are reflected in continu-
ous engineering to ensure that the embedded software delivered
to the devices is high-quality software with the right engineering
specifications.

CHAPTER 5 Using DevOps to Solve New Challenges 47

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

“Operations” in continuous engineering is replaced by hardware
or systems engineers who design and build custom hardware for
the devices. Collaboration between the development and testing
teams and the systems engineers is crucial to ensure that hard-
ware and software are developed and delivered in a coordinated
manner despite hardware and software development needing
to follow different delivery cycles. The development and testing
needs for continuous delivery and testing remain the same. Simu-
lators are used to test software and hardware during development.

ANTI-PATTERNS
In the real world, there are always limitations to adoption of DevOps
principles. Some of these limitations are functions of the industries
and environments in which a business exists, such as regulatory com-
pliance, complex hardware systems, or immature software delivery
capabilities. In such cases, DevOps needs to be adopted in light of
anti-patterns (ineffective or counterproductive patterns) that may not
be acceptable for an organization, based on its business needs.

Water-SCRUM-fall

Forrester (www.forrester.com), a global research and advisory com-
pany, coined the term Water-SCRUM-fall to describe the current state
of adoption of agile software development methodologies. From a
DevOps perspective, this means that whereas development teams
may have adopted agile practices, the teams around them may still
have manual, waterfall-style processes that don’t allow for continuous
delivery. In several enterprises, this situation results from the corpo-
rate culture. A company that adopts DevOps must embed manual
processes in broader DevOps practices.

NoOps

In a NoOps organization, Operations is eliminated as a separate
department, and its responsibilities are merged into those of
Development. Netflix, an Internet television provider, is a proponent
of this method. NoOps may work well for some organizations, but
some waiting is involved to see if this organizational model will have
wider practical appeal.

https://www.forrester.com

48 DevOps For Dummies, 3rd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

CHAPTER 6 Making DevOps Work: IBM’s Story 49

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Making DevOps Work:
IBM’s Story

DevOps is being adopted company-wide at IBM and continues
to regularly evolve. This adoption is a result of the success of
using a DevOps approach pioneered at IBM Software Group

(SWG) Rational and now being used at Watson, Tivoli, Global
Business Services, and other divisions. This chapter provides a
case study of IBM SWG’s own adoption of DevOps capabilities by
the IBM Rational Collaborative Lifecycle Management product
team.

This software delivery effort is unique in that it’s developed in the
open — the software delivery team delivers all its development
artifacts and ongoing work, including all detailed work-items, on
jazz.net. This website is open to the public, and any registered
user can look at the work planned, work ongoing, and the history
of all the development work done for the software products.

Chapter 6

IN THIS CHAPTER

 » Understanding the best practices for
executives

 » Organizing your team

 » Identifying DevOps goals

 » Taking note of the DevOps
transformation

 » Learning from the DevOps results

https://jazz.net

50 DevOps For Dummies, 3rd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Taking a Look at the Executive’s Role
Culture is a hidden thread in an organization. It is based on val-
ues and behaviors that evolve from both management and other
employees. Many times you don’t actually understand the culture
of the organization until you embark on a significant change. There
will be those skeptics who take a wait and see approach to deter-
mine if this is the passing fad of the month. Leaders will emerge. It
is essential to establish an approach to understand these dynamics
and to know who is who so you can address the real inhibitors.

To address the cultural dynamic, the IBM SWG executive used a
number of approaches:

 » Select the right leader. The leader’s role is to pull together
the differing viewpoints to start to bring the team to a
common set of objectives, inhibitors, process changes, and
decisions on where to start first.

 » Involve stakeholders. Support for these changes has to
come from the leadership, management, and individual
contributors across different development disciplines. There
must be business stakeholders, architects, developers,
testers, and operations involved and named leaders from
these areas who are champions for change.

 » Measure improvements and outcomes. It’s critical to have
a set of key metrics that incorporate both the needed
efficiencies and the business outcomes. These goals and
measurements should set a high bar and hold people
accountable, but they shouldn’t cause disengagement.

 » Build momentum with early successes. Understanding
these inefficiencies and measuring the improvements in
each area builds momentum for change.

 » Communicate and listen. As a leader, it’s important to
understand the real dynamics of how the change is taking
hold in the team. Spending time having one-on-one conver-
sations and regular face-to-face interactions with the
technical teams, management, and business leaders helps to
gauge the buy-in of the team, their perspective on the
inhibitors, and, equally important, an opportunity for
management to share perspectives on priorities and
progress.

CHAPTER 6 Making DevOps Work: IBM’s Story 51

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

If you’re an executive, you should support the teams and make
yourself available to understand and remove obstacles. Operating
as a whole team with clear business goals is necessary to bringing
everyone together on the same path.

Putting Together the Team
The IBM SWG Rational Collaborative Lifecycle Management
product team is part of a larger group that develops a set of more
than 80 software development tools in the categories of software
delivery planning, software development, application deploy-
ment, software quality management, and application monitoring
and analytics.

This IBM SWG product team is a large, global organization with
four core product teams working at more than 25 locations in 10
countries. Before adopting a DevOps approach, the group worked
on a yearly release schedule including an additional three to six
months of lead time to actually determine what went into that
yearly release.

Setting DevOps Goals
The IBM SWG team felt they took too long to respond to shifts in the
market as well as the shifts in demand from customers. The team
decided to shorten the delivery cycle, not only in the development
and test phases, but also for the collaboration and interactions with
the business stakeholders and customers. The goal was set to move
from a yearly release schedule to once every quarter.

In addition to the need to accelerate its development to deliver new
capabilities more frequently, the team had to move more quickly
to support cloud delivery models, mobile development, mobile
testing, and other capabilities to address technology shifts. The
team chose to embrace DevOps principles and practices to trans-
form the way the group develops software to deliver value to its
customers earlier and more frequently.

Making a modification of this scope required a cultural change
within the organization, so four workgroups were established that
were made up of members of the management team and technical

52 DevOps For Dummies, 3rd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

leaders. These workgroups examined the software delivery pro-
cesses from beginning to end and took responsibility for changing
the ways of working. A specific set of measurements and action
plans was established to address the key points in the develop-
ment process. A continuous delivery champion team was cre-
ated, including an evangelist who educated teams and shared best
practices across the organization.

The IBM SWG team started its journey of adopting DevOps by
identifying these goals:

 » Streamline the process and introduce new methodologies.

 » Leverage tools for consistency, for scalability to other teams,
and for traceability and metrics.

 » Evolve the culture to continuously improving.

Learning from the DevOps
Transformation

This section describes the steps taken by the IBM SWG team to
facilitate the DevOps transformation.

Expanding agile practices
Existing agile practices were expanded beyond development and
test to include clients, business stakeholders, and operations in
order to break down silos and improve results. This broader agile
model allows teams to work together to produce consistent, high-
quality software that delivers value for the business by using a set
of processes that is integrated at every step.

A “one team” approach was taken that combined product man-
agement, design, and development. The development team
included the traditional roles of development managers and team
leads but also brought in operations management and architects
to support an end-to-end life cycle strategy.

Dedicated resources were provided to coach and mentor teams
in agile and continuous delivery across the organization. A focus
on capabilities versus product components helped to break down

CHAPTER 6 Making DevOps Work: IBM’s Story 53

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

traditional silo boundaries and allow for ship readiness with every
sprint and automation. These feature teams were also empowered
by the assignment of dedicated development managers. Regular
Scrum meetings were held at all levels of the development orga-
nization to identify and solve blocking issues, track key metrics,
utilize live dashboard data, and communicate critical information.

To improve the timeliness of market changes with development
priorities, a strategic product committee was formed and consisted
of product management, development directors, architects, and
business owners. Their responsibilities included the following:

 » Allocating and ensuring funding for program execution
success

 » Driving, assisting, and supporting program execution

 » Establishing long-term vision and direction for the business

 » Prioritizing epics and user stories for annual releases that
align with the long-term vision

Leveraging test automation
To eliminate the traditional long back-end test cycles and improve
the quality of releases, an agile continuous testing approach was
adopted using automation and virtualization. A rhythm was
established with four-week iterations ending with a demo and
four-week milestones ending with a customer-useable release.
Retrospectives after each milestone and understanding technical
debt helped eliminate waste in future iterations. The IBM SWG
team motto was “test early and test often.”

The team adopted the following best practices for test automation:

 » Automate repetitive and labor-intensive tests.

 » Automate in areas where bugs are frequently found.

 » Run automation on every build; run early and often.

 » Create automation that’s resistant to user interface (UI)
changes — use a framework that separates the UI from the tests.

 » Make it easy to create, deliver, and maintain the automation
establishing strong feature team ownership.

 » Plan automation development work into your estimates and
ensure developers have time to work on it.

54 DevOps For Dummies, 3rd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Develop metrics so you can evaluate whether your automa-
tion is useful (you can’t improve what you can’t measure).

 » Constantly reevaluate if your automation is finding bugs and
refactor it if it’s not.

To support test automation, the team deployed IBM Rational Test
Workbench for functional and performance testing, and to enable
more frequent testing, automating the deployment of builds
was critical. By using IBM UrbanCode Deploy, the team saw test
deployment costs reduced by 90 percent through automated build
deployment, which included automating any necessary applica-
tion and database server configuration settings.

Building a delivery pipeline
The IBM SWG team decided to build a delivery pipeline that lev-
eraged “tools-as-a-service” and enabled developers to commit
code, test, and deploy to a production environment in about 60
minutes compared to one to two days prior. This process reduced
the need for rework and maximized productivity.

In the team’s deployment, it recognized that a continuous deliv-
ery pipeline needed to embrace the following best practices:

 » Shift-left testing and automate as much as possible.

 » Use the same deployment mechanisms everywhere.

 » Strive to maintain a constant state of ship-readiness.

 » Treat infrastructure as code.

In Figure 6-1, you see the products and the functions provided as part
of the continuous delivery pipeline adopted by the IBM SWG team.

FIGURE 6-1: The continuous delivery pipeline.

CHAPTER 6 Making DevOps Work: IBM’s Story 55

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

A key best practice essential in implementing a continuous deliv-
ery pipeline is to “treat infrastructure as code.” What this means
is that developers can write scripts to configure the required infra-
structure for their application as part of their application code. In
the past, this was typically done by a system administrator or an
operations person, but now the control and the efficiencies it pro-
vides can be accomplished by the developer directly. Puppet, Chef,
and IBM UrbanCode Deploy with Patterns are examples of the new
category of infrastructure automation tools that make infrastruc-
ture as code a practical reality.

The IBM SWG team now treats infrastructure as code and follows
these best practices:

 » Treat pattern definitions, script packages, and services
as code.

 » Version everything.

 » Automate deployment of topology patterns to the cloud.

 » Manage versions of patterns across multiple cloud
environments.

 » Automate the testing of patterns.

 » Cleanup catalog resources to avoid sprawl.

Experimenting rapidly
The concept of continuous delivery includes not only software
development activities, such as continuous integration and con-
tinuous deployment, but also the more fundamental activity of
learning, which is best achieved through frequent experimenta-
tion and measuring the results.

When features and functions are added to an application, you
never know for certain if the customer will receive the expected or
intended benefits. So that’s why it’s important to IBM to experi-
ment early and often, solicit feedback from customers as to what
actually works for them, and discard those features that have little
benefit or perhaps are even a hindrance. This strategy is depicted
in the sketch in Figure 6-2.

56 DevOps For Dummies, 3rd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The IBM SWG team learned a great deal about frequent experi-
mentation and developed the following best practices:

 » Establish metrics and success/failure criteria.

 » Figure out what works by running experiments — tiny tests
for a small subset of users to help determine the usefulness
of a feature.

 » Run multiple experiments continuously.

 » Make fact-based decisions quickly.

 » Deliver faster and you can experiment faster.

 » Establish a mechanism to enable system-wide experiment-
ing (Google Analytics, IBM Digital Analytics, and so on).

 » Consider different models of experimenting (classical A/B
testing, multi-armed bandit, and so on).

 » Follow two paths simultaneously for related projects:
Experiment on a cloud-based project and use the data from
the experiments to not only drive the direction of that
project but also related on-premise projects.

Continuously improving
The IBM SWG team wanted to create a culture of continuous
improvement and leverage measures of effectiveness and effi-
ciency to ensure they were actually improving. The teams manage
their continuous improvement efforts like an agile project. They
support continuous improvement by tracking maturity goals,

FIGURE 6-2: A look at hypothesis-driven development.

CHAPTER 6 Making DevOps Work: IBM’s Story 57

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

pain points, and associated improvements actions to address
the issues. They track continuous improvement work like other
development work to ensure the investment is widely understood.
Maturity goals (for example, capabilities) may take one or more
quarters to actually develop and adopt. Large pain points may
take many months to reduce or eliminate. But in any case, spe-
cific improvement actions should all be sized to deliver within a
month.

The IBM SWG team uses retrospectives to institutionalize contin-
uous improvement. A retrospective is a regular review of what went
well, what didn’t go so well, and what actions need to be taken to
improve. If you aren’t doing retrospectives, it implies a level of
perfection in software development that has yet to be achieved.
In a large team, you can have a hierarchy of retrospectives. For
the IBM SWG team, each component team does a retrospective,
and these are used as input into application-level retrospectives
that are then used as input in a higher solution-level retrospec-
tive. Actions from the retrospectives are documented as pain
points with corresponding improvement actions to take in order
to reduce or alleviate the pain.

And to ensure teams are getting better, the IBM SWG team estab-
lished both business metrics and operational metrics to measure
the effectiveness of the DevOps transformation. The business
metrics consist of measured improvements in

 » Faster time to delivery

 » Improved client satisfaction

 » Reduced maintenance spending while increasing innovation
investment

 » Increased client adoption

Operational metrics impact team’s efficiency over time and mea-
sure the following:

 » Time to initiate a new project

 » Build time

 » Iteration test time

58 DevOps For Dummies, 3rd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Looking at the DevOps Results
A DevOps approach has helped the IBM SWG team realize gains
in improved customer satisfaction, increased customer adoption,
and a double-digit revenue growth. Shorter time frames have
energized delivery teams within IBM, resulting in rapid delivery
of upgraded on-premise solutions and new cloud services such as
Bluemix, DevOp Services for Bluemix, and Collaborative Lifecycle
Management as a Managed Service (CLM aaMS).

As a specific example of the success of a DevOps approach at IBM,
Figure 6-3 shows the measured results achieved by the IBM SWG
Rational Collaborative Lifecycle Management product team.

FIGURE 6-3: IBM SWG team measured improvements.

CHAPTER 7 Ten DevOps Myths 59

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Ten DevOps Myths

The DevOps movement is young and still emerging, espe-
cially among enterprises. Like any new movement or trend,
it has attracted myths and fallacies. Some of these myths

may have originated in companies or projects that tried and failed
to adopt DevOps. What’s true in one situation, however, may not
necessarily be true in others. Here are some common myths about
DevOps — and the facts.

DevOps Is Only for “Born on
the Web” Shops

What is generally referred to as DevOps originated in “born on
the web” companies (companies that originated on the Inter-
net) such as Etsy, Netflix, and Flickr. Large enterprises have been
using DevOps-aligned principles and practices to deliver software
for decades, however. Furthermore, current DevOps principles, as
described in this book, have a level of maturity that makes them
applicable to large enterprises that have multiple-platform tech-
nologies and distributed teams.

Chapter 7

IN THIS CHAPTER

 » Understanding what DevOps is for

 » Knowing what DevOps isn’t for

60 DevOps For Dummies, 3rd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps Is Operations Learning
How to Code

Operations teams have always written scripts to manage envi-
ronments and repetitive tasks, but with the evolution of infra-
structure as code, operations teams saw a need to manage these
large amounts of code with software engineering practices such
as versioning code, check-in, check-out, branching, and merging.
Today, a new version of an environment is created by an operations
team member by creating a new version of the code that defines it.
This doesn’t mean, however, that operations teams need to learn
how to code in Java or C#. Most infrastructure-as-code technolo-
gies use languages like Ruby, which are relatively easy to pick up,
especially for people who have scripting experience.

DevOps Is Just for Development
and Operations

Although the name suggests a development-plus-operations
 origin, DevOps is for the whole team. All stakeholders in the
delivery of software — lines of business, practitioners, executives,
partners, suppliers, and so on — also have a stake in DevOps.

DevOps Isn’t for ITIL Shops
Some people fear that DevOps capabilities such as continuous
delivery are incompatible with the checks and processes pre-
scribed by the Information Technology Infrastructure Library
(ITIL), a set of documented best practices for IT service man-
agement. In reality, ITIL’s life-cycle model is compatible with
DevOps. Most of the principles defined by ITIL align very well with
DevOps principles. ITIL has, however, received a bad reputation in
some organizations because of being implemented predominately
with slow, waterfall processes that didn’t allow for rapid changes
and improvement. Aligning such practices between development
and operations is the essence of DevOps.

CHAPTER 7 Ten DevOps Myths 61

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps Isn’t for Regulated Industries
Regulated industries have an overarching need for checks and
balances and for approvals from stakeholders who ensure com-
pliance and auditability. Adopting DevOps actually improves com-
pliance, if it’s done properly. Automating process flows and using
tools that have built-in capability to capture audit trails can help.

Organizations in regulated industries will always have manual
checkpoints or gates, but these elements aren’t incompatible with
DevOps.

DevOps Isn’t for Outsourced
Development

Outsourced teams should be viewed as suppliers or capability
providers in the DevOps delivery pipeline. Organizations should
ensure, however, that the practices and processes of the supplier
teams are compatible with those of their internal project teams.

Using common release planning, work-item management, and
asset repository tools significantly improves communication and
collaboration between lines of business and supplier and proj-
ect teams, enabling DevOps practices. Using application release
management tools can greatly improve an organization’s abil-
ity to define and coordinate the entire release process across all
participants.

No Cloud Means No DevOps
When you think of DevOps, you often think of cloud because of
its ability to dynamically provision infrastructure resources for
developers and testers to rapidly obtain test environments with-
out waiting days/weeks for a manual request to be fulfilled. How-
ever, cloud isn’t necessary to adopt DevOps practices as long as
an organization has efficient processes for obtaining resources for
deploying and testing application changes.

62 DevOps For Dummies, 3rd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Virtualization itself is optional. Continuous delivery to physical
servers is possible if the servers can be configured and deployed
to at the necessary speed.

DevOps Isn’t for Large, Complex Systems
Complex systems require the discipline and collaboration that
DevOps provides. Such systems typically have multiple software
and/or hardware components, each of which has its own deliv-
ery cycles and timelines. DevOps facilitates coordination of these
delivery cycles and system-level release planning.

DevOps Is Only about Communication
Some members of the DevOps community have coined humor-
ous terms such as ChatOps (teams carry out all communications
through communication tools like Internet Relay Chat) and HugOps
(DevOps focuses only on collaboration and communication). These
terms stem from the misconception that communication and col-
laboration solve all problems.

DevOps depends on communication, but better communica-
tion coupled with wasteful processes doesn’t lead to better
deployments.

DevOps Means Continuous Change
Deployment

This misconception comes from organizations that deploy only
web applications. Some of these companies proudly state on their
websites that they deploy to production daily. Daily deployment,
however, is not only impractical in large organizations that deploy
complex applications, but may also be impossible because of reg-
ulatory or company restrictions. DevOps isn’t just about deploy-
ment, and it’s certainly not just about deploying continuously to
production. Adopting DevOps allows organizations to release to
production when they want to and is not based on a particular
date marked on a calendar.

Notes

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Notes

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

http://Dummies.com

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Icons Used in This Book
	Beyond the Book

	Chapter 1 What Is DevOps?
	Understanding the Business Need for DevOps
	Recognizing the Business Value of DevOps
	Enhanced customer experience
	Increased capacity to innovate
	Faster time to value

	Seeing How DevOps Works
	Develop and test against production-like systems
	Deploy with repeatable, reliable processes
	Monitor and validate operational quality
	Amplify feedback loops

	Chapter 2 Looking at DevOps Capabilities
	Paths to DevOps Adoption
	Steer
	Develop/Test
	Collaborative development
	Continuous testing

	Deploy
	Operate
	Continuous monitoring
	Continuous customer feedback and optimization

	Chapter 3 Adopting DevOps
	Knowing Where to Begin
	Identifying business objectives
	Identifying bottlenecks in the delivery pipeline

	People in DevOps
	DevOps culture
	DevOps team

	Process in DevOps
	DevOps as a business process
	Change management process
	DevOps techniques

	Technology in DevOps
	Infrastructure as code
	Delivery pipeline
	Deployment automation and release management

	Chapter 4 Looking at How Cloud Accelerates DevOps
	Using Cloud as an Enabler for DevOps
	Full-Stack Deployments
	Choosing a Cloud Service Model for DevOps
	IaaS
	PaaS

	Understanding What a Hybrid Cloud Is

	Chapter 5 Using DevOps to Solve New Challenges
	Mobile Applications
	ALM Processes
	Scaling Agile
	Multiple-Tier Applications
	DevOps in the Enterprise
	Supply Chains
	The Internet of Things

	Chapter 6 Making DevOps Work: IBM’s Story
	Taking a Look at the Executive’s Role
	Putting Together the Team
	Setting DevOps Goals
	Learning from the DevOps Transformation
	Expanding agile practices
	Leveraging test automation
	Building a delivery pipeline
	Experimenting rapidly
	Continuously improving

	Looking at the DevOps Results

	Chapter 7 Ten DevOps Myths
	DevOps Is Only for “Born on the Web” Shops
	DevOps Is Operations Learning How to Code
	DevOps Is Just for Development and Operations
	DevOps Isn’t for ITIL Shops
	DevOps Isn’t for Regulated Industries
	DevOps Isn’t for Outsourced Development
	No Cloud Means No DevOps
	DevOps Isn’t for Large, Complex Systems
	DevOps Is Only about Communication
	DevOps Means Continuous Change Deployment

	EULA

